9 research outputs found

    Individual-subject Functional Localization Increases Univariate Activation but Not Multivariate Pattern Discriminability in the "Multiple-demand" Frontoparietal Network.

    Get PDF
    The frontoparietal "multiple-demand" (MD) control network plays a key role in goal-directed behavior. Recent developments of multivoxel pattern analysis (MVPA) for fMRI data allow for more fine-grained investigations into the functionality and properties of brain systems. In particular, MVPA in the MD network was used to gain better understanding of control processes such as attentional effects, adaptive coding, and representation of multiple taskrelevant features, but overall low decoding levels have limited its use for this network. A common practice of applying MVPA is by investigating pattern discriminability within a ROI using a template mask, thus ensuring that the same brain areas are studied in all participants. This approach offers high sensitivity but does not take into account differences between individuals in the spatial organization of brain regions. An alternative approach uses independent localizer data for each subject to select the most responsive voxels and define individual ROIs within the boundaries of a group template. Such an approach allows for a refined and targeted localization based on the unique pattern of activity of individual subjects while ensuring that functionally similar brain regions are studied for all subjects. In the current study, we tested whether using individual ROIs leads to changes in decodability of task-related neural representations as well as univariate activity across the MD network compared with when using a group template. We used three localizer tasks to separately define subject-specific ROIs: spatial working memory, verbal working memory, and a Stroop task. We then systematically assessed univariate and multivariate results in a separate rule-based criterion task. All the localizer tasks robustly recruited the MD network and evoked highly reliable activity patterns in individual subjects. Consistent with previous studies, we found a clear benefit of the subject-specific ROIs for univariate results from the criterion task, with increased activity in the individual ROIs based on the localizers' data, compared with the activity observed when using the group template. In contrast, there was no benefit of the subject-specific ROIs for the multivariate results in the form of increased discriminability, as well as no cost of reduced discriminability. Both univariate and multivariate results were similar in the subject-specific ROIs defined by each of the three localizers. Our results provide important empirical evidence for researchers in the field of cognitive control for the use of individual ROIs in the frontoparietal network for both univariate and multivariate analysis of fMRI data and serve as another step toward standardization and increased comparability across studies.This work was funded by a Royal Society Dorothy Hodgkin Research Fellowship (United Kingdom) to Yaara Erez (DH130100). Sneha Shashidhara was supported by a scholarship from the Gates Cambridge Trust, Cambridge, United Kingdom. Floortje Spronkers was supported by an Erasmus+ Traineeship grant and a Stichting A.S.C. Academy grant

    Integrated Intelligence from Distributed Brain Activity.

    Get PDF
    How does organized cognition arise from distributed brain activity? Recent analyses of fluid intelligence suggest a core process of cognitive focus and integration, organizing the components of a cognitive operation into the required computational structure. A cortical 'multiple-demand' (MD) system is closely linked to fluid intelligence, and recent imaging data define nine specific MD patches distributed across frontal, parietal, and occipitotemporal cortex. Wide cortical distribution, relative functional specialization, and strong connectivity suggest a basis for cognitive integration, matching electrophysiological evidence for binding of cognitive operations to their contents. Though still only in broad outline, these data suggest how distributed brain activity can build complex, organized cognition

    Precise Topology of Adjacent Domain-General and Sensory-Biased Regions in the Human Brain.

    Get PDF
    Recent functional MRI studies identified sensory-biased regions across much of the association cortices and cerebellum. However, their anatomical relationship to multiple-demand (MD) regions, characterized as domain-general due to their coactivation during multiple cognitive demands, remains unclear. For a better anatomical delineation, we used multimodal MRI techniques of the Human Connectome Project to scan subjects performing visual and auditory versions of a working memory (WM) task. The contrast between hard and easy WM showed strong domain generality, with essentially identical patterns of cortical, subcortical, and cerebellar MD activity for visual and auditory materials. In contrast, modality preferences were shown by contrasting easy WM with baseline; most MD regions showed visual preference while immediately adjacent to cortical MD regions, there were interleaved regions of both visual and auditory preference. The results may exemplify a general motif whereby domain-specific regions feed information into and out of an adjacent, integrative MD core
    corecore